力加倍,則加速度也將加倍。)物體的質量(或物質的量)越大,則加速度越小,(以同樣的力作用於具有兩倍質量的物體則只產生一半的加速度。)小汽車可提供一個熟知的例子,發動機的功率越大,則加速度越大,但是小汽車越重,則對同樣的發動機加速度越小。
除了他的運動定律,牛頓還發現了描述引力的定律:任何兩個物體都相互吸引,其引力大小與每個物體的質量成正比。這樣,如果其中一個物體(例如A)的質量加倍,則兩個物體之間的引力加倍。這是你能預料得到的,因為新的物體A可看成兩個具有原先質量的物體,每一個用原先的力來吸引物體B,所以A和B之間的總力加倍。其中一個物體質量大到原先的2倍,另一物體大到3倍,則引力就大到6倍。現在人們可以看到,何以落體總以同樣的速率下降:具有2倍重量的物體受到將其拉下的2倍的引力,但它的質量也大到兩倍。按照牛頓第二定律,這兩個效應剛好互相抵消,所以在所有情形下加速度是同樣的。
牛頓引力定律還告訴我們,物體之間的距離越遠,則引力越小。牛頓引力定律講,一個恆星的引力只是一個類似恆星在距離小一半時的引力的4分之1。這個定律極其精確地預言了地球、月亮和其他行星的軌道。如果這定律變為恆星的萬有引力隨距離減小得比這還快,則行星軌道不再是橢圓的,它們就會以螺旋線的形狀盤旋到太陽上去。如果引力減小得更慢,則遠處恆星的引力將會超過地球的引力。
亞里士多德和伽利略——牛頓觀念的巨大差別在於,亞里士多德相信存在一個優越的靜止狀態,任何沒有受到外力和衝擊的物體都採取這種狀態。特別是他以為地球是靜止的。但是從牛頓定律引出,並不存在一個靜止的唯一標準。人們可以講,物體A靜止而物體B以不變的速度相對於物體A運動,或物體B靜止而物體A運動,這兩種講法是等價的。例如,我們暫時將地球的自轉和它繞太陽的公轉置之一旁,則可以講地球是靜止的,一列火車以每小時90英哩的速度向北前進,或火車是靜止的,而地球以每小時90英哩的速度向南運動。如果一個人在火車上以運動的物體做實驗,所有牛頓定律都成立。例如,在火車上打乓乒球,將會發現,正如在鐵軌邊上一張臺桌上一樣,乓乒球服從牛頓定律,所以無法得知是火車還是地球在運動。
缺乏靜止的絕對的標準表明,人們不能決定在不同時間發生的兩個事件是否發生在空間的同一位置。例如,假定在火車上我們的乓乒球直上直下地彈跳,在一秒鐘前後兩次撞到桌面上的同一處。在鐵軌上的人來看,這兩次彈跳發生在大約相距100米的不同的位置,因為在這兩回彈跳的間隔時間裡,火車已在鐵軌上走了這麼遠。這樣,絕對靜止的不存在意味著,不能像亞里士多德相信的那樣,給事件指定一個絕對的空間的位置。事件的位置以及它們之間的距離對於在火車上和鐵軌上的人來講是不同的,所以沒有理由以為一個人的處境比他人更優越。
牛頓對絕對位置或被稱為絕對空間的不存在感到非常憂慮,因為這和他的絕對上帝的觀念不一致。事實上,即使絕對空間的不存在被隱含在他的定律中,他也拒絕接受。因為這個非理性的信仰,他受到許多人的嚴厲批評,最有名的是貝克萊主教,他是一個相信所有的物質實體、空間和時間都是虛妄的哲學家。當人們將貝克萊的見解告訴著名的約翰遜博士時,他用腳尖踢到一塊大石頭上,並大聲地說:“我要這樣駁斥它!”
亞里士多德和牛頓都相信絕對時間。也就是說,他們相信人們可以毫不含糊地測量兩個事件之間的時間間隔,只要用好的鐘,不管誰去測量,這個時間都是一樣的。時間相對於空間是完全分開並獨立的。這就是大部份人當作常識的觀點。然而,我們必須改變這種關於空間和時間的觀念。雖然這種顯而易見的常識可以很好地對付運動甚慢的諸如蘋果、行星的問題,但在處理以光速或接近光速運動的物體時卻根本無效。
光以有限但非常高的速度傳播的這一事實,由丹麥的天文學家歐爾·克里斯琴森·羅麥於1676年第一次發現。他觀察到,木星的月亮不是以等時間間隔從木星背後出來,不像如果月亮以不變速度繞木星運動時人們所預料的那樣。當地球和木星都繞著太陽公轉時,它們之間的距離在變化著。羅麥注意到我們離木星越’遠則木星的月食出現得越晚。他的論點是,因為當我們離開更遠時,光從木星月亮那兒要花更長的時間才能達到我們這兒。然而,他測量到的木星到地球的距離變化不是非常準確,所以他的光速的數值為