關燈 巨大 直達底部
親,雙擊螢幕即可自動滾動
第11部分

H歡�謖庵智樾蝸攏�W傭緣囊桓齔稍蔽�W傭�硪懷稍蔽�戳W櫻ü夂鴕�Φ姆戳W誘�嗆土W酉嗤���

因為能量不能無中生有,所以粒子反粒子對中的一個參與者有正的能量,而另一個有負的能量。由於在正常情況下實粒子總是具有正能量,所以具有負能量的那一個粒子註定是短命的虛粒子。它必須找到它的伴侶並與之相湮滅。然而,一顆接近大質量物體的實粒子比它遠離此物體時能量更小,因為要花費能量抵抗物體的引力吸引才能將其推到遠處。正常情況下,這粒子的能量仍然是正的。但是黑洞裡的引力是如此之強,甚至在那兒一個實粒子的能量都會是負的。所以,如果存在黑洞,帶有負能量的虛粒子落到黑洞裡變成實粒子或實反粒子是可能的。這種情形下,它不再需要和它的伴侶相湮滅了,它被拋棄的伴侶也可以落到黑洞中去。啊,具有正能量的它也可以作為實粒子或實反粒子從黑洞的鄰近逃走(圖7。4)。對於一個遠處的觀察者而言,這看起來就像粒子是從黑洞發射出來一樣。黑洞越小,負能粒子在變成實粒子之前必須走的距離越短,這樣黑洞發射率和表觀溫度也就越大。

圖7。4

輻射出去的正能量會被落入黑洞的負能粒子流所平衡。按照愛因斯坦方程E=mc^2(E是能量,m是質量,c為光速),能量和質量成正比。所以往黑洞去的負能量流減少它的質量。當黑洞損失質量時,它的事件視介面積變小,但是它發射出的輻射的熵過量地補償了黑洞的熵的減少,所以第二定律從未被違反過。

還有,黑洞的質量越小,則其溫度越高。這樣當黑洞損失質量時,它的溫度和發射率增加,因而它的質量損失得更快。人們並不很清楚,當黑洞的質量最後變得極小時會發生什麼。但最合理的猜想是,它最終將會在一個巨大的、相當於幾百萬顆氫彈爆炸的發射爆中消失殆盡。

一個具有幾倍太陽質量的黑洞只具有千萬分之一度的絕對溫度。這比充滿宇宙的微波輻射的溫度(大約2。7K)要低得多,所以這種黑洞的輻射比它吸收的還要少。如果宇宙註定繼續永遠膨脹下去,微波輻射的溫度就會最終減小到比這黑洞的溫度還低,它就開始損失質量。但是即使那時候,它的溫度是如此之低,以至於要用100億億億億億億億億年(1後面跟66個O)才全部蒸發完。這比宇宙的年齡長得多了,宇宙的年齡大約只有100到200億年(1或2後面跟10個0)。另一方面,正如第六章 提及的,在宇宙的極早期階段存在由於無規性引起的坍縮而形成的質量極小的太初黑洞。這樣的小黑洞會有高得多的溫度,並以大得多的速率發生輻射。具有10億噸初始質量的太初黑洞的壽命大體和宇宙的年齡相同。初始質量比這小的太初黑洞應該已蒸發完畢,但那些比這稍大的黑洞仍在輻射出X射線以及伽瑪射線。這些X 射線和伽瑪射線像是光波,只是波長短得多。這樣的黑洞幾乎不配這黑的綽號:它們實際上是白熱的,正以大約1萬兆瓦的功率發射能量。

只要我們能夠駕馭黑洞的功率,一個這樣的黑洞可以開動十個大型的發電站。然而,這是非常困難的:這黑洞的質量和一座山差不多,卻被壓縮成萬億之一英寸亦即比一個原子核的尺度還小!如果在地球表面上你有這樣的一個黑洞,就無法阻止它透過地面落到地球的中心。它會穿過地球而來回振動,直到最後停在地球的中心。所以僅有的放置黑洞並利用之發出能量的地方是繞著地球轉動的軌道,而僅有的將其放到這軌道上的辦法是,用在它之前的一個大質量的吸引力去拖它,這和在驢子前面放一根胡羅卜相當像。至少在最近的將來,這個設想並不現實。

但是,即使我們不能駕馭這些太初黑洞的輻射,我們觀測到它們的機遇又如何呢?我們可以去尋找在太初黑洞壽命的大部分時間裡發出的伽瑪射線輻射。雖然它們在很遠以外的地方,從大部分黑洞來的輻射非常弱,但是從所有它們來的總的輻射是可以檢測得到的。我們確實觀察到了這樣的一個伽瑪射線背景:圖7。5表示觀察到的強度隨頻率的變化。然而,這個背景可以是也可能是除了太初黑洞之外的過程產生的。圖7。5中點線指出,如果在每立方光年平均有300個太初黑洞,它們所發射的伽瑪射線的強度應如何地隨頻率而變化。所以可以說,伽瑪射線背景的觀測並沒給太初黑洞提供任何正的證據。但它們確實告訴我們,在宇宙中每立方光年不可能平均有300個以上的太初黑洞。這個極限表明,太初黑洞最多隻能構成宇宙中百萬分之一的物質。

圖7。5