關燈 巨大 直達底部
親,雙擊螢幕即可自動滾動
第7部分

人們具有自己單獨時間這一點,又何以使他們在以不同速度旅行時測量到同樣的光速呢?光脈衝的速度是它在兩個事件之間的距離除以事件之間的時間間隔。(這裡事件的意義是在一個特定的時間在空間中單獨的一點發生的某種事物。)以不同速度運動的人們在兩個事件之間的距離上看法不會相同。例如,如果我測量在高速公路上賓士的轎車,我會認為它僅僅移動了一公里,但對於在太陽上的某個人,由於當轎車在路上行走時地球移動了,所以他覺得轎車移動了1800公里。因為以不同速度運動的人測量到事件之間不同的距離,所以如果他們要在光速上相互一致,就必須也測量到不同的時間間隔。

愛因斯坦在1905所寫的論文中提出的原始的相對論是我們現在稱作狹義相對論的東西。它描述物體在空間和時間中如何運動。它顯示出,時間不是和空間相分離的自身存在的普適的量。正如上下、左右和前後一樣,將來和過去不如說僅僅是在稱作時空的某種東西中的方向。你只能朝時間將來的方向前進,但是你能沿著和它夾一個小角度的方向前進。這就是為什麼時間能以不同的速率流逝。

狹義相對論把時間和空間合併到一起,但是空間和時間仍然是事件在其中發生的一個固定的背景。你能夠選擇透過時空運動的不同途徑,但是對於修正時空背景卻無能為力。然而,當愛因斯坦於1915年提出了廣義相對論後這一切都改變了。他引進了一種革命性的觀念,即引力不僅僅是在一個固定的時空背景裡作用的力。相反的,引力是由在時空中物質和能量引起的時空畸變。譬如炮彈和行星等物體要沿著直線穿越時空,但是由於時空是彎曲的捲曲的,而不是平坦的,所以它們的路徑就顯得被彎折了。地球要沿著直線穿越時空,但是由太陽質量產生的時空曲率使它必須沿著一個圓圈繞太陽公轉。類似地,光要沿著直線旅行,但是太陽附近的時空曲率使得從遙遠恆星來的光線在透過太陽附近時被彎折。在通常情況下,人們不能在天空中看到幾乎和太陽同一方向的恆星。然而在日食時,太陽的大部分光線被月亮遮擋了,人們就能觀測到從那些恆星來的光線。愛因斯坦是在第一次世界大戰期間孕育了他的廣義相對論,那時的條件不適合於作科學觀測。但是戰爭一結束,一支英國的探險隊觀測了1919年的日食,並且證實了廣義相對論的預言:時空不是平坦的,它被在其中的物質和能量所彎曲。

這是愛因斯坦的偉大勝利。他的發現完全變革了我們思考空間和時間的方式。它們不再是一件在其中發生的被動的背景。我們再也不能把空間和時間設想成永遠前進,而不受在宇宙中發生事件影響的東西。相反的,它們現在成為動力學的量,它們和在其中發生的事件相互影響。

質量和能量的一個重要性質是它們總是正的。這就是引力總是把物體相互吸引到一起的原因。例如,地球的引力把我們吸引向它,即便我們處於世界的相反的兩邊。這就是為什麼在澳大利亞的人不會從世界上掉落出去的原因。類似地,太陽引力把行星維持在圍繞它公轉的軌道上並且阻止地球飛向黑暗的星際空間。按照廣義相對論,質量總是正的這個事實意味著,時空正如地球的表面那樣向自身彎折。如果質量為負的,時空就會像一個馬鞍面那樣以另外的方式彎折。這個時空的正曲率反映了引力是吸引的事實。愛因斯坦把它看作重大的問題。那時人們廣泛地相信宇宙是靜止的,然而如果空間特別是時間向它們自身彎折回去的話,宇宙怎麼能以多多少少和現在同樣的狀態永遠繼續下去?

愛因斯坦原始的廣義相對論方程預言,宇宙不是膨脹便是收縮。因此愛因斯坦在方程中加上額外的一項,這些方程把宇宙中的質量和能量與時空曲率相關聯。這個所謂的宇宙項具有引力的排斥效應。這樣就可以用宇宙項的排斥去和物質的吸引相平衡。換言之,由宇宙項產生的負時空曲率能抵消由宇宙中質量和能量產生的正時空曲率。人們以這種方式可以得到一個以同樣狀態永遠繼續的宇宙模型。如果愛因斯坦堅持他原先沒有宇宙項的方程,他就會做出宇宙不是在膨脹便是在收縮的預言。直到1929年埃德溫·哈勃發現遠處的星系離開我們而去之前,沒人想到宇宙是變化的。宇宙正在膨脹。後來愛因斯坦把宇宙項稱作〃我一生中最大的錯誤〃。

但是不管有沒有宇宙項,物質使時空向它自身彎折的事實仍然是一個問題,儘管它沒有被廣泛認識到事情會是這樣子的。這裡指的是物質可能把它所在的區域彎曲得如此厲害,以至於事實上把自己從宇宙的其餘部分分割開來。這個區域會變成