這熱體的溫度和黑洞的表面引力成比例並且和質量成反比。這就使得柏肯斯坦關於黑洞具有有限的熵的建議完全協調,因為它意味著能以某個不為零的溫度處於熱平衡。
從此以後,其他許多人用各種不同的方法確證了黑洞能熱發射的數學證據。以下便是理解這種輻射的一種方法。量子力學表明,整個空間充滿了〃虛的〃粒子反粒子對,它們不斷地成對產生、分開,然而又聚到一塊並互相湮滅。因為這些粒子不像〃實的〃粒子那樣,不能用粒子加速器直接觀測到,所以被稱作虛的。儘管如此,可以測量到它們的間接效應。由它們在受激氫原子發射的光譜上產生的很小位移(藍姆位移)證實了虛粒子的存在。現在,在黑洞存在的情形,虛粒子對中的一個成員可以落到黑洞中去,留下來的另一個成員就失去可以與之相湮滅的配偶。這被背棄的粒子或者反粒子,可以跟隨其配偶落到黑洞中去,但是它也可以逃逸到無窮遠去,在那裡作為從黑洞發射出的輻射而出現。
另一種看待這個過程的方法是,把落到黑洞中去的粒子對的成員,譬如講反粒子,考慮成真正地在向時間的過去方向旅行的一顆粒子。這樣,這顆落入黑洞的反粒子可被認為是從黑洞跑出來但向時間過去旅行的一顆粒子。當該粒子到達原先該粒子反粒子對產生的地方,它就被引力場散射,這樣就使它在時間前進的方向旅行。
因此,量子力學允許粒子從黑洞中逃逸出來,這是經典力學不允許的事。然而,在原子和核子物理學中存在許多其他的場合,有一些按照經典原理粒子不能逾越的壁壘,按照量子力學原理的隧道效應可讓粒子透過。
圍繞一顆黑洞的壁壘厚度和黑洞的尺度成比例。這表明非常少粒子能從一顆像假想在天鵝X-1中存在的那麼大的黑洞中逃逸出來,但是粒子可以從更小的黑洞迅速地漏出來。仔細的計算表明,發射出的粒子具有一個熱譜,其溫度隨著黑洞質量的減小而迅速增高。對於一顆太陽質量的黑洞,其溫度大約只有絕對溫度的千萬分之一度。宇宙中的輻射的一般背景把從黑洞出來具有那種溫度的熱輻射完全淹沒了。另一方面,質量只有十億噸的黑洞,也就是尺度大約和質子差不多的太初黑洞,會有大約一千二百億度開文芬的溫度,這相當於一千萬電子伏的能量。處於這等溫度下的黑洞會產生電子正電子對以及諸如光子、中微子和引力子(引力能量的假想的攜帶者)的零質量粒子。太初黑洞以六十億瓦的速率釋放能量,這相當於六個大型核電廠的輸出。
隨著黑洞發射粒子,它的質量和尺度就穩恆地減小。這使得更多粒子更容易穿透出來,這樣發射就以不斷增加的速度繼續下去,直到黑洞最終把自己發射殆盡。從長遠地看,宇宙中的每個黑洞都將以這個方法蒸發掉。然而對於大的黑洞它需要的時間實在是太長了,具有太陽質量的黑洞會存活10↑66年左右。另一方面,太初黑洞應在大爆炸迄今的一百億年間幾乎完全蒸發光,正如我們所知的,大爆炸是宇宙的起始。這種黑洞現在應發射出能量大約為一億電子伏的硬伽瑪射線。
當·佩奇和我在SAS-2衛星測量伽瑪輻射宇宙背景的基礎上計算出,宇宙中的太初黑洞的平均密度必須小於大約每立方光年兩百顆。那時當·佩奇是在加州理工學院。如果太初黑洞集中於星系的〃暈〃中,它在銀河系中的區域性密度可以比這個數目高一百萬倍,而不是在整個宇宙中均勻地分佈。暈是每個星系都要嵌在其中的稀薄的快速運動恆星的薄雲。這意味著最鄰近地球的太初黑洞可能至少在冥王星那麼遠。
黑洞蒸發的最後階段會進行得如此快速,以至於它會在一次極其猛烈的爆發中終結。這個爆發的激烈程度依存於有多少不同種類的基本粒子而定。如果正如現在廣為相信的,所有粒子都是由也許六種不同的夸克構成,則最終的爆炸會具有和大約一千萬顆百萬噸氫彈相等的能量。另一方面,日內瓦歐洲核子中心的H·哈格登提出了另一種理論。他論斷道,存在質量越來越大的無限數目的基本粒子。隨著黑洞變得越小越熱,它就會發射出越來越多不同種類的粒子,也許會產生比按照夸克假定計算的能量大1
0倍的爆炸。因此,觀測黑洞爆發可為基本粒子物理提供非常重要的資訊,這也許是用任何其他方式不能得到的資訊。
一次黑洞爆發會傾注出大量的高能伽瑪射線。雖然可以用衛星或者氣球上的伽瑪射線探測器觀測它們,但要送上一臺足夠大的探測器,使之有相當的機會攔截到來自於一次爆炸的不少數量的伽瑪射線光子,是很困難的。使用太空梭在軌