你真的掉到一顆黑洞中去將會發生什麼。不少人認為,如果黑洞在旋轉的話,你便可穿過時空的一個小洞而到宇宙的另一個區域去。這顯然產生了空間旅行的可能性。如果我們要想到別的恆星,且不說到別的星系去的旅行在未來成為現實,這的確是我們夢寐以求的東西。否則的話,沒有東西可比光旅行得更快的這一事實意味著,到最鄰近的恆星的來回路途至少需要花八年時間。這就是到α一半人馬座度週末所需要的時間!另一方面,如果人們能穿過一顆黑洞,就可在宇宙中的任何地方重新出現。怎麼選取你的目的地還不很清楚,最初你也許想到處女座度假,而結果卻到了蟹狀星雲。
我要非常遺憾地告訴未來的星系旅行家們,這個場景是行不通的。如果你跳進一顆黑洞,就會被撕成粉碎。然而,在某種意義上,構成你身體的粒子會繼續跑到另一個宇宙中去。我不清楚,某個在黑洞中被壓成義大利麵條的人,如果得知他的粒子也許能存活的話,是否對他是很大的安慰,
儘管我在這裡採用了稍微輕率的語氣,這篇講演卻是基於可靠的科學作根據。我在這裡講的大部分現在已得到在這個領域作研究的其他科學家的贊同,儘管這是發生在新近的事。然而,這篇講演的最後部分是根據還沒有達成共識的最近的工作。它引起了巨大的興趣和激動。
雖然我們現在稱作黑洞的概念可以回溯到二百多年前,但是〃黑洞〃這個名字是晚到1967年才由美國物理學家約翰·惠勒提出來的。這真是一項天才之舉:這個名字本身就保證黑洞進入科學幻想的神秘王國。為原先沒有滿意名字的某種東西提供確切的名字也刺激了科學研究。在科學中不可低估好名字的重要性。
盡我所知,首先討論黑洞的是一位名叫約翰·米歇爾的劍橋人,他在1783年寫了一篇有關的論文。他的思想如下:假設你在地球表面上向上點燃一顆炮彈。在它上升的過程中,其速度由於引力效應而減慢。它最終會停止上升而落回到地球上。然而,如果它的初速度大於某個臨界值,它將永遠不會停止上升並落回來,而是繼續向外運動。這個臨界速度稱為逃逸速度。地球的逃逸速度大約為每秒七英里,太陽的逃逸速度大約為每秒一百英里。這兩個速度都比實際炮彈的速度大,但是它們比起光速來就太小了,光速是每秒186000英里。這表明引力對光的影響甚微,光可以毫無困難地從地球或太陽逃逸。可是,米歇爾推論道,也許可能有這樣的一顆恆星,它的質量足夠大而尺度足夠小,這樣它的逃逸速度就比光速還大。因為從該恆星表面發出的光會被恆星的引力場拉曳回去,所以它不能到達我們這裡,因此我們不能看到這顆恆星。然而,我們可以根據它的引力場作用到附近物體上的效應檢測到它的存在。
把光當作炮彈處理是不自洽的。根據在1897年進行的一項實驗,光線總是以恆常速度旅行。那麼引力怎麼能把光線減慢呢?直到1915年愛因斯坦提出廣義相對論後,人們才有了引力對光線效應的自洽理論。儘管如此,直到本世紀六十年代,人們才廣泛意識到這個理論對老的恆星和其他重質量物體的含義。
根據廣義相對論,空間和時間一起被認為形成稱作時空的四維空間。這個空間不是平坦的,它被在它當中的物質和能量所畸變或者彎曲。在向我們傳來的光線或者無線電波於太陽附近受到的彎折中可以觀測到這種曲率。在光線透過太陽鄰近的情形時,這種彎折非常微小。然而,如果太陽被收縮到只有幾英里的尺度,這種彎折就會厲害到這種程度,即從太陽表面發出的光線不能逃逸出來,它被太陽的引力場拉曳回去。根據相對論,沒有東西可以比光旅行得更快,這樣就存在一個任何東西都不能逃逸的區域。這個區域就叫做黑洞。它的邊界稱為事件視界。它是由剛好不能從黑洞逃出而只能停留在邊緣上徘徊的光線形成的。
假定太陽能收縮到只有幾英里的尺度,聽起來似乎是不可思議的。人們也許認為物質不可能被壓縮到這種程度。但是在實際上這是可能的。
太陽具有現有的尺度是因為它是熱的。它正在把氫燃燒成氦,如同一顆受控的氫彈。這個過程中釋放出的熱量產生了壓力,這種壓力使太陽能抵抗得住自身引力的吸引,正是這種引力使得太陽尺度變小。
然而,太陽最終會耗盡它的燃料。這要發生也是在冉過大約五十億年以後的事,所以不必焦急訂票飛到其他恆星去。然而,具有比太陽更大質量的恆星會更迅速地耗盡其燃料。在燃料用盡後就開始失去熱量並且收縮。如果它們質量比大約太陽質量的兩倍還小,就