關燈 巨大 直達底部
親,雙擊螢幕即可自動滾動
第67部分

斯韋的指出,電場和磁場的改變,不能侷限於空間的某一部分,而是以等於電流的電磁單位與靜電單位的比值的速度傳播著,光就是這樣一種電磁現象。這個結論在1888年為赫茲的實驗證實。然而,這樣的理論還不能說明能產生象光這樣高的頻率的電振子的性質,也不能解釋光的色散現象。到了1896年洛倫茲創立電子論,才解釋了發光和物質吸收光的現象,也解釋了光在物質中傳播的各種特點,包括對色散現象的解釋。在洛倫茲的理論中,以太乃是廣袤無限的不動的媒質,其唯一特點是,在這種媒質中光振動具有一定的傳播速度。

對於像熾熱的黑體的輻射中能量按波長分佈這樣重要的問題,洛倫茲理論還不能給出令人滿意的解釋。並且,如果認為洛倫茲關於以太的概念是正確的話,則可將不動的以太選作參照系,使人們能區別出絕對運動。而事實上,1887年邁克耳遜用乾涉儀測“以太風”,得到否定的結果,這表明到了洛倫茲電子論時期,人們對光的本性的認識仍然有不少片面性。

1900年,普朗克從物質的分子結構理論中借用不連續性的概念,提出了輻射的量子論。他認為各種頻率的電磁波,包括光,只能以各自確定分量的能量從振子射出,這種能量微粒稱為量子,光的量子稱為光子。

量子論不僅很自然地解釋了灼熱體輻射能量按波長分佈的規律,而且以全新的方式提出了光與物質相互作用的整個問題。量子論不但給光學,也給整個物理學提供了新的概念,所以通常把它的誕生視為近代物理學的起點。(未完待續)

258 物理學之光學 中

1905年,愛因斯坦運用量子論解釋了光電效應。他給光子作了十分明確的表示,特別指出光與物質相互作用時,光也是以光子為最小單位進行的。

1905年9月,德國《物理學年鑑》發表了愛因斯坦的“關於運動媒質的電動力學”一文。第一次提出了狹義相對論基本原理,文中指出,從伽利略和牛頓時代以來佔統治地位的古典物理學,其應用範圍只限於速度遠遠小於光速的情況,而他的新理論可解釋與很大運動速度有關的過程的特徵,根本放棄了以太的概念,圓滿地解釋了運動物體的光學現象。

這樣,在20世紀初,一方面從光的干涉、衍射、偏振以及運動物體的光學現象確證了光是電磁波;而另一方面又從熱輻射、光電效應、光壓以及光的化學作用等無可懷疑地證明了光的量子性——微粒性。

1922年發現的康普頓效應,1928年發現的喇曼效應,以及當時已能從實驗上獲得的原子光譜的超精細結構,它們都表明光學的發展是與量子物理緊密相關的。光學的發展歷史表明,現代物理學中的兩個最重要的基礎理論——量子力學和狹義相對論都是在關於光的研究中誕生和發展的。

此後,光學開始進入了一個新的時期,以致於成為現代物理學和現代科學技術前沿的重要組成部分。其中最重要的成就,就是發現了愛因斯坦於1916年預言過的原子和分子的受激輻射,並且創造了許多具體的產生受激輻射的技術。

愛因斯坦研究輻射時指出,在一定條件下,如果能使受激輻射繼續去激發其他粒子,造成連鎖反應。雪崩似地獲得放大效果,最後就可得到單色性極強的輻射,即鐳射。1960年。西奧多。梅曼用紅寶石製成第一臺可見光的鐳射器;同年製成氦氖鐳射器;1962年產生了半導體鐳射器;1963年產生了可調諧染料鐳射器。由於鐳射具有極好的單色性、高亮度和良好的方向性,所以自1958年發現以來。得到了迅速的發展和廣泛應用,引起了科學技術的重大變化。

光學的另一個重要的分支是由成像光學、全息術和光學資訊處理組成的。這一分支最早可追溯到1873年阿貝提出的顯微鏡成像理論,和1906年波特為之完成的實驗驗證;1935年澤爾尼克提出位相反襯觀察法,並依此由蔡司工廠製成相襯顯微鏡,為此他獲得了1953年諾貝爾物理學獎;1948年伽柏提出的現代全息照相術的前身——波陣面再現原理,為此,伽柏獲得了1971年諾貝爾物理學獎。自20世紀50年代以來,人們開始把數學、電子技術和通訊理論與光學結合起來。給光學引入了頻譜、空間濾波、載波、線性變換及相關運算等概念,更新了經典成像光學,形成了所謂“傅立葉光學”。再加上由於鐳射所提供的相乾光和由利思及阿帕特內克斯改進了的全息術,形成了一個新的學科領域——光學資訊處理。光纖通訊就是依據這方面理論的重要成就,它為資訊