關燈 巨大 直達底部
親,雙擊螢幕即可自動滾動
第7部分

所謂的黑洞。物體可以落到黑洞中去,但是沒有東西可以逃逸出來。要想逃逸出來就得比光旅行得更快,而這是相對論所不允許的,這樣,黑洞中的物質就被俘獲住,並且坍縮成某種具有非常高密度的未知狀態。

愛因斯坦為這種坍縮的含義而深深困擾,並且他拒絕相信這會發生。但是羅伯特·奧本海默在1939年指出,一顆具有多於太陽質量兩倍的晚年恆星在耗盡其所有的燃料時會不可避免地坍縮。然後奧本海默受戰爭干擾,捲入到原子彈計劃中,而失去對引力坍縮的興趣。其他科學家更關心那種能在地球上研究的物理。關於宇宙遠處的預言似乎不能由觀測來檢驗,所以他們不信任。然而在二十世紀六十年代,天文觀測無論在範圍上還是在質量上都有了巨大的改善,使人們對引力坍縮和早期宇宙產生新的興趣。直到羅傑·彭羅斯和我證明了若干定理之後,愛因斯坦廣義相對論在這種情形下所預言的才清楚地呈現出來。這些定理指出,時空向它自身彎曲的事實表明,必須存在奇性,也就是時空具有一個開端或者終結的地方。它在大約一百五十億年前的大爆炸處有一個開端,而且對於坍縮恆星以及任何落入坍縮恆星留下的黑洞中的東西它將到達一個終點。

愛因斯坦廣義相對論預言奇性的事實引起物理學的一場危機。把時空曲率和質量能量分佈相關聯的廣義相對論方程在奇性處沒有意義。這表明廣義相對論不能預言從奇性會冒出什麼東西來。尤其是,廣義相對論不能預言宇宙在大爆炸處應如何啟始。這樣,廣義相對論不是一個完整的理論。為了確定宇宙應如何啟始以及物體在自身引力下坍縮時會發生什麼,需要一個附加的要素。

量子力學看來是這個必須附加的要素。1905年,也正是愛因斯坦撰寫他有關狹義相對論論文的同一年,他還寫了一篇有關被稱為光電效應現象的論文。人們觀測到當光射到某些金屬上時會釋放出帶電粒子。使人迷惑的是,如果減小光的強度,發射出的粒子數隨之減少,但是每個發射出的粒子的速度保持不變。愛因斯坦指出,如果光不像大家所假想的那樣以連續變化的量,而是以具有確定大小的波包入射,則可以解釋這種現象。光只能採取稱為量子的波包形式的思想是由德國物理學家馬克斯·普郎克引進的。它有點像人們不能在超級市場買到散裝糖,只能買到一公斤裝的糖似的。普郎克使用量子的觀念解釋紅熱的金屬塊為什麼不發出無限的熱量。但是,他把量子簡單地考慮成一種理論技巧,它不對應於物理實在中的任何東西。愛因斯坦的論文指出,你可以觀察到單獨的量子。每一顆發射出的粒子都對應於一顆打到金屬上的光量子。這被廣泛地承認為是對量子理論的一個重要貢獻,他因此而獲得1922年的諾貝爾獎。(他應該因廣義相對論而得獎,可惜空間和時間是彎曲的思想仍然被認為過於猜測性和爭議性,所以他們用光電效應替代而頒獎給他,這不是說,它本身不值得這個獎。)

直到1925年,在威納·海森堡指出光電效應使得精確測量一顆粒子的位置成為不可能後,它的含義才被充分意識到。為了看粒子的位置,你必須把光投射到上面。但是愛因斯坦指出,你不能使用非常少量的光,你至少要使用一個波包或量子。這個光的波包會擾動粒子並使它在某一方向以某一速度運動。你想把粒子的位置測量得越精確,你就要用越大能量的波包並且因此更厲害地擾動該粒子。不管你怎麼測量粒子,其位置上的不確定性乘上其速度上的不確定性總是大於某個最小量。

這個海森堡的不確定性原理顯示,人們不能精確地測量系統的態,所以就不能精確預言它將來的行為。人們所能做的一切是預言不同結果的機率。正是這種機率或隨機因素使愛因斯坦大為困擾。他拒絕相信物理定律不應該對將來要發生的作出確定的、毫不含糊的預言。但是不管人們是否喜歡,所有證據表明,量子現象和不確定性原理是不可避免的,而且發生於物理學的所有分支之中。

愛因斯坦的廣義相對論是所謂的經典理論,也就是說,它不和不確定性原理相結合。所以人們必須尋求一種把廣義相對論和不確定性原理合併在一起的新理論。這種新理論和經典廣義相對論的差異在大多數情形下是非常微小的。正如早先提到的,這是因為量子效應預言的不確定性只是在非常小的尺度下,而廣義相對論處理時空的大尺度結構。然而,羅傑·彭羅斯和我證明的奇性定理顯示,時空在非常小的尺度下會變成高度彎曲的。不確定性原理的效應那時就會變得非常重要,而且似乎導致某些令人注目的結果。

愛因斯坦的關於量